Galois self-dual constacyclic codes
نویسندگان
چکیده
منابع مشابه
Galois self-dual constacyclic codes
Generalizing Euclidean inner product and Hermitian inner product, we introduce Galois inner products, and study the Galois self-dual constacyclic codes in a very general setting by a uniform method. The conditions for existence of Galois self-dual and isometrically Galois self-dual constacyclic codes are obtained. As consequences, the results on self-dual, iso-dual and Hermitian self-dual const...
متن کاملSkew constacyclic codes over Galois rings
We generalize the construction of linear codes via skew polynomial rings by using Galois rings instead of finite fields as coefficients. The resulting non commutative rings are no longer left and right Euclidean. Codes that are principal ideals in quotient rings of skew polynomial rings by a two sided ideals are studied. As an application, skew constacyclic self-dual codes over GR(4) are constr...
متن کاملDouble circulant self-dual and LCD codes over Galois rings
This paper investigates the existence, enumeration and asymptotic performance of self-dual and LCD double circulant codes over Galois rings of characteristic p and order p with p and odd prime. When p ≡ 3 (mod 4), we give an algorithm to construct a duality preserving bijective Gray map from such a Galois ring to Z p2 . Using random coding, we obtain families of asymptotically good self-dual an...
متن کاملConstruction of MDS self-dual codes over Galois rings
The purpose of this paper is to construct nontrivial MDS self-dual codes over Galois rings. We consider a building-up construction of self-dual codes over Galois rings as a GF(q)-analogue of [20]. We give a necessary and sufficient condition on which the building-up construction holds. We construct MDS self-dual codes of lengths up to 8 over GR(3, 2), GR(3, 2) and GR(3, 2), and near-MDS self-du...
متن کاملPolycyclic codes over Galois rings with applications to repeated-root constacyclic codes
Cyclic, negacyclic and constacyclic codes are part of a larger class of codes called polycyclic codes; namely, those codes which can be viewed as ideals of a factor ring of a polynomial ring. The structure of the ambient ring of polycyclic codes over GR(p,m) and generating sets for its ideals are considered. It is shown that these generating sets are strong Groebner bases. A method for finding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Designs, Codes and Cryptography
سال: 2016
ISSN: 0925-1022,1573-7586
DOI: 10.1007/s10623-016-0282-8